Getting Started: Data

Overview

  • The Maxon API provides typical data types like maxon::Int, maxon::Bool, etc. Developers should use these data types.
  • It also provides more complex types like maxon::Vector, maxon::Matrix or maxon::String.
  • Instead of low-level C-array one should use build in array types like maxon::BaseArray.
  • Arbitrary "classic" data types can be stored in GeData and BaseContainer containers.
  • Maxon API data can be stored in maxon::Data and maxon::DataDictionary containers.
  • maxon::StreamConversionInterface is an interface for generic data operations e.g. calculation of hash-values or encryption.
  • New "classic" data types are based on iCustomDataType and CustomDataTypeClass.
  • New Maxon API data types are define with MAXON_DATATYPE.

Basic Data Types

The Maxon API provides basic data types in an OS-independent way. Basic data types exist in both 32 and 64 bit size (e.g. maxon::Int32 and maxon::Int64). maxon::Int is the same as maxon::Int64.

See Primitive Data Types Manual (Cinema API) and Basic Data Types.

// This example performs some simple mathematical operations with the
// basic data types provided by the Maxon API.
// add two values
const maxon::Int32 valueA = 123;
const maxon::Int32 valueB = 456;
const maxon::Int32 sum = valueA + valueB;
// get ratio
const maxon::Int referenceValue = 1000;
const maxon::Float ratio = maxon::Float(sum) / maxon::Float(referenceValue);
DiagnosticOutput("Ratio: @", ratio);
Int64 Int
signed 32/64 bit int, size depends on the platform
Definition: apibase.h:187
Float64 Float
Definition: apibase.h:196
int32_t Int32
32 bit signed integer datatype.
Definition: apibase.h:175
#define DiagnosticOutput(formatString,...)
Definition: debugdiagnostics.h:170

There are also special vector and matrix classes. See Vector Manual (Cinema API), Matrix Manual (Cinema API), Vectors and Matrices.

// This example translates the given position using a newly constructed matrix.
// old position
const maxon::Vector pos(100, 100, 100);
// create matrix
// apply matrix
const maxon::Vector newPos = translate * pos;
DiagnosticOutput("New Position: @", newPos);
void Py_ssize_t * pos
Definition: dictobject.h:50
Mat3< Vec3< FLOAT > > GetTranslationMatrix(const Vec3< FLOAT > &translation)
Calculates a matrix to move / translate.
maxon::Vec3< maxon::Float64, 1 > Vector
Definition: ge_math.h:140

Strings

The API includes both the Cinema API ::String as well as maxon::String. The ::String class is based on maxon::String.

See String Manual (Cinema API) and String Manual.

// This example performs various string operations.
const maxon::String foo { "foo" };
const maxon::String bar { "bar" };
const maxon::String fooBar = foo + " "_s + bar;
DiagnosticOutput("Text: @", fooBar);
const maxon::String fooBarUppercase = fooBar.ToUpper();
DiagnosticOutput("All Caps: @", fooBarUppercase);
Definition: string.h:1287

Data Collections

Data can be stored and handled in array, mash maps and lists. These classes allow fast and safe handling of dynamic data.

See BaseArray Manual, Arrays Manual and Maxon API Containers & Data Collections.

// This example creates a BaseArray and fills it with some numbers.
// The stores values are printed to the console.
// create array
// insert data into the array
numbers.Append(0) iferr_return;
numbers.Append(1) iferr_return;
numbers.Append(1) iferr_return;
numbers.Append(2) iferr_return;
numbers.Append(3) iferr_return;
numbers.Append(5) iferr_return;
numbers.Append(8) iferr_return;
// check all elements
for (const maxon::Int32& number : numbers)
{
DiagnosticOutput("Number: @", number);
}
// get specific element
const maxon::Int32 number = numbers[0];
DiagnosticOutput("Number: @", number);
Definition: basearray.h:415
MAXON_ATTRIBUTE_FORCE_INLINE ResultRef< T > Append(ARG &&x)
Appends a new element at the end of the array and constructs it using the forwarded value.
Definition: basearray.h:627
#define iferr_return
Definition: resultbase.h:1531

Cinema API Data Containers

The container types GeData and BaseContainer are used to store any kind of Cinema API data type. The typical use case is to store the parameter values of objects that are based on C4DAtom like BaseObject, BaseMaterial etc.

See GeData Manual, BaseContainer Manual and C4DAtom Manual.

// This example stores some data in a GeData and BaseContainer object.
// define IDs
const ::Int32 VALUE_A = 1;
const ::Int32 VALUE_B = 2;
::Int32 value = 123;
// store data in GeData
GeData data;
data.SetInt32(value);
// store data in BaseContainer
BaseContainer container;
container.SetData(VALUE_A, data);
container.SetInt32(VALUE_B, 456);
// access data
const ::Int32 firstValue = container.GetInt32(VALUE_A);
DiagnosticOutput("First Value: @", firstValue);
const GeData& secondValueData = container.GetData(VALUE_B);
const ::Int32 secondValue = secondValueData.GetInt32();
DiagnosticOutput("Second Value: @", secondValue);
PyObject * value
Definition: abstract.h:715
maxon::Int32 Int32
Definition: ge_sys_math.h:51

Maxon API Data Containers

The Maxon API equivalent to GeData and BaseContainer are maxon::Data and maxon::DataDictionary. These classes are used to store any kind of Maxon API data type. A maxon::DataDictionary is often used to define settings of a complex operation.

See Data Manual and DataDictionary Manual.

// This example stores data in Data and DataDictionary objects.
// define IDs
const Int32 VALUE_A = 1;
const Int32 VALUE_B = 2;
const maxon::Int32 value = 123;
// store data in maxon::Data
// store data in maxon::DataDictionary
maxon::DataDictionary dictionary;
dictionary.Set(VALUE_A, data) iferr_return;
dictionary.Set(VALUE_B, maxon::Int32(456)) iferr_return;
// acess data
const maxon::Int32 firstValue = dictionary.Get<maxon::Int32>(VALUE_A) iferr_return;
DiagnosticOutput("First Value: @", firstValue);
const maxon::Data secondValueData = dictionary.GetData(maxon::ConstDataPtr(VALUE_B)) iferr_return;
const maxon::Int32 secondValue = secondValueData.Get<maxon::Int32>() iferr_return;
DiagnosticOutput("Second Value: @", secondValue);
Definition: datatypebase.h:1745
Definition: datatypebase.h:1234
Result< void > Set(T &&data)
Definition: datatypebase.h:1383
Result< typename std::conditional< GetCollectionKind< T >::value==COLLECTION_KIND::ARRAY||std::is_void_v< T >, T, std::add_lvalue_reference_t< const T > >::type > Get() const
Definition: datatypebase.h:1394

Stream Conversions

maxon::StreamConversionInterface is a generic interface for any kind of data conversion. Examples are data compression, encryption or the calculation of hash values.

See Stream Conversions Manual.

// This example calculates the MD5 hash of a given maxon::String using StreamConversions.
// source text
const maxon::String text { "Hello World" };
// prepare target buffer
// MD5
const maxon::StreamConversionRef md5 = maxon::StreamConversions::HashMD5().Create() iferr_return;
md5.ConvertAll(source, hash) iferr_return;
DiagnosticOutput("MD5 Hash: @", md5Hash);
PyObject Py_hash_t hash
Definition: dictobject.h:35
const Py_UNICODE * source
Definition: unicodeobject.h:54
Result< String > GetHashString(const BaseArray< UChar > &hashValue)
PyObject * text
Definition: pycore_traceback.h:70

Custom Data Types

Classic custom data types are based on iCustomDataType and CustomDataTypeClass. Such custom data types can be stored in GeData and BaseContainer objects.

New Maxon API data types are registered using the MAXON_DATATYPE attribute. Such data types can be stored in maxon::Data and maxon:DataDictionary objects.

See MAXON Data Type.