
1

GoZBrush SDK

GOZ BRUSH SDK

2

GoZBrush SDK

I ADDING GOZ SUPPORT FOR A NEW APPLICATION . . . 3
1. Some notes before starting: . 3
2. Organization of the document: . 3
3. Quick overview of GoZ workflow: . 4

II THE GOZ SDK . 6
1. The main steps/requirements to add GoZ support for a new application. . . 6
2. Overview of the overall GoZ process . 7
3. The binary GoZ file format . 7
4. The source code provided . 8

4.1 “GoZ_Mesh.h”/“GoZ_Mesh.cpp” . 8
4.2 “GoZ_Binary.h”. 9
4.3 “GoZ_Utils.h”/“GoZ_Utils.cpp”: . 9
4.4 “main.cpp” . 9

III THE “GOZBRUSH SUBFOLDER” . 10
1. GoZ_Config.txt . 11
2. GoZ_Help.txt . 11
3. GoZ_ProjectPath.txt . 11
4. GoZ_ObjectList.txt . 11
5. GoZ_Application.txt . 12
6. GoZ_ObjectPath.txt:. 12
7. GoZLocateApp.exe / GoZLocateApp.app . 13
8. GoZBrushFromApp.exe / GoZBrushFromApp.app 13
9. GoZMakeObjectPath.exe / GoZMakeObjectPath.app 13
10. Scripts subfolder. 14

IV THE “APPLICATION SUBFOLDER” . 15
1. GoZ_Info.txt . 15
2. The “Locate utility” . 17
3. The “Install utility”. 18
4. The “Editing utility” . 18
5. GoZ_Config.txt . 19
6. The “Export plugin” . 19

V APPENDIX - PFF: PREFERENCES FILE FORMAT 20

3

GoZBrush SDK

I ADDING GOZ SUPPORT FOR A NEW APPLICATION

1. Some noteS before Starting:

•	 GoZBrush	is	extensible	and	can	support	up	to	32	different	‘GoZ-enabled’	applica-
tions.

•	 GoZBrush	uses	a	“public”	folder	to	exchange	files/data	between	ZBrush	and	ex-
ternal	applications.	Let’s	define	[PIXOLOGIC_PUBLIC]	as	this	public	folder:

	○ “/Users/Shared/Pixologic”	on	MacOSX
	○ “C:\Users\Public\Pixologic”	on	Windows

•	 Each	‘GoZ-enabled’	application	can	be	added	or	removed	easily,	as	it	simply	con-
sists	of	a	subfolder	for	each	application	in	“[PIXOLOGIC_PUBLIC]/GoZApps”	folder.

Let’s	call	it	an	“Application subfolder”.

•	 Additionally,	 GoZBrush	 provides	 a	 folder	 “[PIXOLOGIC_PUBLIC]/GoZBrush”	
which	contains	common	GoZ	files,	such	as	the	GoZBrush	config	file,	or	the	list	of	Sub-
Tools	exchanged,	etc…

Let’s	call	it	the	“GoZBrush subfolder”.

•	 And	all	the	SubTools	/	meshes,	and	texture	data	go	in	the	subfolder	“[PIXOLOG-
IC_PUBLIC]/GoZProjects/Default”.

Let’s	call	it	the	“GoZProjects subfolder”.

2. organization of the document:

•	 In	the	first	part,	we	will	describe	briefly	the	GoZ	SDK,	which	consists	mainly	of	
this	documentation	which	explains	how	to	create	GoZ	support	for	a	new	application,	
plus	some	useful	source	code	to	help	you	write	GoZ	support	for	the	application	of	your	
choice.
•	 In	a	second	part,	we	will	detail	the	“GoZBrush	subfolder”	and	its	content.
•	 In	a	third	part,	we	will	show	the	content	of	the	“Application	subfolder”	and	explain	

each	file	 it	must	contain.	You	will	 find	detailed	 information	 for	each	file	you	need	 to	
provide.
•	 A	short	appendix	will	define	some	terms/concepts	we	introduce	for	GoZ	descrip-

tion	purpose.

4

GoZBrush SDK

3. Quick overview of goz workflow:

On	the	following	pages	you	will	find	two	diagrams:
•	 One	shows	the	complete	GoZ	workflow	between	ZBrush	and	a	GoZ	Application,
•	 The	other	summarizes	the	workflow	from	a	GoZ	Application	to	ZBrush.

5

GoZBrush SDK

6

GoZBrush SDK

II THE GOZ SDK

The	“GoZ	SDK”	is	not	really	a	true	SDK,	as	it	does	not	rely	on	a	plugin	system	with	
libraries	and	DLLs.

Instead,	it	relies	on	utilities/tools	provided	in	a	separate	subfolder	for	each	application,	
plus	3D	data	files	(“.GoZ”	or	any	other	extension	supported	by	ZBrush).	The	GoZBrush	
system	will	call	these	utilities/tools,	and	read/write	the	3D	data	files	to	communicate	with	
the	target	application.

As	there	is	no	plugin	system,	the	SDK	content	consists	mainly	of	this	documentation	
which	explains	in	detail	all	the	steps	required	to	create	a	GoZ	support	for	the	application	
of	your	choice	(let’s	call	it	the	‘GoZ-enabled’	application).

This	documentation	also	contains	a	brief	description	of	the	binary	GoZ	file	format.

In	addition,	we	provide	some	source	code	which	may	be	useful	when	writing	GoZ	
support	for	the	application	of	your	choice.

In	this	first	part,	we	will:

•	 Summarize	the	major	steps	required	to	add	GoZ	support	for	your	application.
•	 Give	an	overview	of	the	internal	GoZBrush	behavior.
•	 Explain	the	binary	GoZ	file	format.
•	 Describe	the	main	functions	provided	in	the	source	code.

1. the main StepS/reQuirementS to add goz Support for a new application

•	 Writing	import/export	code	for	GoZ	binary	format	(which	is	very	easy)
•	 Providing	 several	 utilities(.exe/.app	or	 .bat/.sh)	which	 are	 required	by	 the	GoZ	

process:
	○One	utility	to	search	for	any	installed	target	application:	then	in	ZBrush	the	user	
will	choose	the	path	among	all	the	returned	target	application	paths	found.
	○One	utility	to	install	any	file	needed	in	the	target	application	path	(for	example,	it	
can	be	scripts	for	target	application,	the	GoZ	icon,	etc…)
	○One	utility	to	read	GoZ	files	(using	the	import	code	from	point	1)	and	open	the	
GoZ	files	in	target	application.	This	utility	must	launch	the	target	application	if	
and	only	if	it	 is	not	running,	and	for	each	GoZ	file	it	must	either	create	a	new	
mesh	or	update	existing	mesh	depending	on	whether	the	GoZ	file	was	already	
opened	in	the	target	application	or	not	yet.

•	 For	the	target	application,	providing	a	command	(such	as	a	button,	menu	entry,	
etc…)	which	 is	responsible	 for	exporting	the	selection	to	GoZ	files	(using	the	export	
code	above)	and	then	calling	an	existing	utility(GoZBrushFromApp)	which	will	launch/
update	ZBrush.

7

GoZBrush SDK

2. overview of the overall goz proceSS

In	ZBrush,	the	user	clicks	on	a	GoZ	button	(GoZ,	All	or	Visible):

•	 If	ZBrush		detects	a	new	GoZ-enabled	application	support,	it	calls	the	utility	which	
searches	for	all	installed	target	applications,	and	ask	the	user	to	choose	the	application	
path	he	wants	to	use	(an	additional	’browse’	button	is	proposed	to	easily	handle	custom	
installations).	Then	after	the	user	has	chosen	a	valid	application	path,	ZBrush	calls	the	
utility	responsible	for	installing	the	required	files	in	the	target	application.
•	 ZBrush	saves	all	the	SubTools	required	(depending	on	which	GoZ	button	the	user	

clicked	on:	GoZ,	All	or	Visible)	to	GoZ	files,	then	it	calls	the	utility	responsible	for	open-
ing	the	GoZ	files	in	the	target	application.

In	the	target	application,	the	user	calls	the	GoZ	command	(via	a	GoZ	button,	or	a	GoZ	
menu,	or	whatever	other	way):

•	 The	target	GoZ	command	will	save	the	selected	meshes	as	GoZ	files	(being	care-
ful	to	reuse	the	same	GoZ	file	name	for	meshes	already	“linked”	to	ZBrush	–	“linked”	
means	either	already	sent	to	ZBrush	previously	or	coming	from	ZBrush).
•	 Then	the	ZBrush	utility	(GoZBrushFromApp	utility)	will	launch	ZBrush	if	it	is	not	

running	 (and	only	 in	 that	case),	and	 for	each	GoZ	file	saved	 in	point	1,	 it	will	either	
update	the	existing	matching	SubTool	(if	the	GoZ	file	is	already	linked	to	a	SubTool	in	
ZBrush),	or	create	a	new	SubTool(this	will	“link”	the	GoZ	file	to	the	created	SubTool).

3. the binary goz file format

The	GoZ	file	format	is	a	simple	binary	file	format,	which	stores	one	SubTool	(or	mesh),	
with	extra	optional	information	like	UVs,	maps	(color/normal/displacement),	polygroups	
(ID	per	polygon),	masks	(masking	alpha	value	per	vertex),	and/or	polypainting	(MRGB	
value	per	vertex).

It	also	stores	some	basic	transformation	flags	such	as	axis	swaps,	texture	flips,	etc…

The	binary	format	itself	is	pretty	simple:
•	 First,	a	32-bytes	file	header,	starting	with	‘GoZb’	and	followed	by	28	bytes	of	

text	(for	example	“File	generated	by	ZBrush	4.0”)
•	 Thenfollow	several	data	blocks,	one	for	each	type	of	data,	plus	one	for	the	“end-of-file”.	

Each	data	block	starts	with	a	16-bytes	block	header:

	○ [4	bytes]	tag:	it	identifies	the	block	type
	○ [4	bytes]	size:	the	block	size,	including	the	16-bytes	block	header
	○ [4	bytes]	count:	the	data	count	(depending	on	the	type:	face	count,	vertex	count,	
…)
	○ [4	bytes]	modifier:	an	extra	floating	value,	which	may	be	used	or	not,	depending	
on	the	block	type	(for	example,	the	displacement	factor	in	a	displacement	map	

8

GoZBrush SDK

block)
The	other	content	of	a	data	block	depends	on	the	block	type.
While	parsing,	any	unsupported	block	can	be	skipped	easily,	as	you	get	its	size	
in	the	header.

•	 The	last	block	in	a	GoZ	binary	file	is	a	“end-of-file”	block.	It	simply	consists	on	a	
16-bytes	sized	block,	which	tag	is	GoZ_TAG_END_OF_FILE.

You	will	find	detailed	information	on	the	different	blocks	directly	in	the	source	code	
provided.

4. the Source code provided

The	source	code	provided	is	straightforward:	

4.1 “goz_meSh.h”/“goz_meSh.cpp”

This	is	a	basic	parser/writer	for	GoZ	file	format.	Usage	is	simple:

•	 First,	create	a	GoZ	mesh:	GoZ_Mesh *mesh = new GoZ_Mesh;
•	 Fills	data	(minimal	data	are	required	 to	write	a	valid	GoZ	file	using	GoZ_Mesh	

class):

	○mesh->m_name	(cstring)
	○mesh->m_vertexCount	(the	number	of	vertices)
	○mesh->m_vertices	(3	floats	per	vertex)
	○mesh->m_faceType	 (recommended	 is	 GoZ_TAG_FACE4_LIST_
FORMAT_1)
	○mesh->m_faceCount	(the	number	of	faces)
	○mesh->m_vertexIndices	(depending	on	the	format	used	in	‘faceType’.

If	 recommended	format	 is	used:	4	 integers	per	quad/face,	 triangle	represented	
by	4th	index=-1)

•	 Then	writes	the	mesh:	mesh->writeMesh(“file.GoZ”);
•	 For	reading	a	mesh:

	○Call	mesh->readMesh(“file.GoZ”);
	○ Then	get	public	data	from	the	GoZ_Mesh	class.

9

GoZBrush SDK

4.2 “goz_binary.h”

This	is	the	complete	description	of	the	GoZ	file	format	(with	comments).
All	the	block	types	(or	tags)	are	defined	in	this	file,	along	with	comments	to	describe	

the	data	associated	to	each	tag,	and	how	those	data	are	organized	in	the	block.

4.3 “goz_utilS.h”/“goz_utilS.cpp”:

These	files	provides	some	functions	that	you	may	need	to	use	when	writing	GoZ	sup-
port	for	the	application	of	your	choice:

•	 Several	low-level	functions	to	read/write	a	GoZ	binary	file
•	 Several	functions	to	read/write	preferences	(PFF	file	format)
•	 Other	useful	misc	functions

4.4 “main.cpp”

A	sample	main	 function	 is	provided	 just	 to	show	how	to	use	the	utility	source	files	
provided.

10

GoZBrush SDK

III THE “GOZBRUSH SUBFOLDER”

This	folder	contains	several	files	relative	to	GoZBrush:	some	internal	files	used	only	
by	ZBrush	itself,	plus	common	files	and	utilities/applications	that	may	be	used	by	every	
‘GoZ-enabled’	application:

•	 A	file	“GoZ_Config.txt”	which	contains	general	GoZ	options	and	preferences.

•	 A	file	“GoZ_Help.txt”	which	contains	the	help	displayed	in	ZBrush	to	the	user,	the	
first	time	he	clicks	on	a	GoZ	button.

•	 A	 file	 “GoZ_ProjectPath.txt”	 which	 stores	 the	 path	 to	 the	 folder	 where	 all	 the	
“.GoZ”	and	texture	files	are	written.

•	 A	temporary	file	“GoZ_ObjectList.txt”	which	will	store,	at	each	GoZ	exchange,	the	
list	of	objects/SubTools/meshes	to	exchange	between	ZBrush	and	any	‘GoZ-enabled’	
application.

•	 A	temporary	file	“GoZ_Application.txt”	which	stores	the	active	‘GoZ-enabled’	ap-
plication.

•	 A	temporary	file	“GoZ_ObjectPath.txt”	which	is	used	by	the	‘GoZ-enabled’	appli-
cation	with	the	utility	“GoZMakeOjectPath”	to	create	a	“Unique	object	identifier”,	which	
is	 a	 unique	 link	 between	 an	 object/mesh	 from	 the	 ‘GoZ-enabled’	 application	 and	 a	
ZBrush	SubTool.

•	 A	utility/application	“GoZLocateApp.exe”	/	“GoZLocateApp.app”	which	searches	
for	every	versions	of	an	application	in	the	default	application	folder(s).

•	 A	utility/application	 “GoZBrushFromApp.exe”	 /	 “GoZBrushFromApp.app”	which,	
during	a	GoZ	exchange,	opens	the	objects	exported	from	a	‘GoZ-enabled’	application	
into	ZBrush.

•	 A	 utility/application	 “GoZMakeObjectPath.exe”	 /	 “GoZMakeObjectPath.app”	
which	generates	a	“Unique	object	identifier”,	which	is	a	unique	link	between	an	object/
mesh	from	the	‘GoZ-enabled’	application	and	a	ZBrush	SubTool.

•	 A	subfolder	 “Scripts”	which	contains	 internal	ZScripts	used	by	ZBrush	 for	GoZ	
purposes.

11

GoZBrush SDK

1. goz_config.txt

This	file	stores	general	GoZ	settings,	and	uses	the	PFF	file	format	(see	Appendix).

Here	are	the	main	settings/preferences:

•	 PATH:	The	full	path	to	ZBrush	application
•	 IMPORT_AS_SUBTOOL:	The	GoZ	preference	“Import	as	SubTool”.
•	 SHOW_HELP_WINDOW:	A	boolean	indicating	whether	or	not	showing	the	GoZ	

help	note	when	the	user	click	on	any	GoZ	button.

Note:
The full path to ZBrush is not initialized during ZBrush installation, but is updated each time

ZBrush is launched. So, GoZ requires ZBrush to be launched right after installation in order to
work properly when the user want to edit in ZBrush an object coming from a ‘GoZ-enabled’ ap-
plication.

2. goz_help.txt

This	file	is	for	internal	use	only	and	must	NOT	be	modified.

It	contains	the	help	text	displayed	to	the	user	the	first	time	he	clicks	on	the	GoZ	but-
ton.

3. goz_projectpath.txt

This	file	stores	the	‘Project	path’,	which	is	the	path	to	the	folder	used	to	store	the	GoZ	
files	exchanged	between	ZBrush	and	the	‘GoZ-enabled’	applications.

Each	‘GoZ-enabled’	application	must	read/write	the	GoZ	files	into	this	‘Project	path’,	
as	ZBrush	does.

The	default	‘Project	path’	is	“[PIXOLOGIC_PUBLIC]/GoZProjects/Default”.

Note:
Changing the ‘Project path’ to another folder was not tested at all, so it may lead to some is-

sue. Be aware that if you need to change it for internal use, you do so at your own risk.

4. goz_objectliSt.txt

This	file	is	a	temporary	file	used	during	an	exchange	between	ZBrush	and	a	‘GoZ-
enabled’	application,	and	contains	the	list	of	“objects”	to	exchange.

12

GoZBrush SDK

On	the	ZBrush	side,	an	“object”	is	a	SubTool,	and	on	the	‘GoZ-enabled’	application	
side,	it’s	a	mesh.

Some	notes	and	requirements	about	this	text	file:
•	 It	contains	one	line	per	object,	and	for	each	line	it	stores	the	full	path	to	the	GoZ	

file	for	that	object,	but	without	the	extension.	Let’s	call	it	the	“Unique	object	identifier”.
For	example,	when	send	SubTools	‘sphere1’	and	‘cube1’	from	ZBrush	to	another	
application:

	○ ZBrush	first	saves	the	2	SubTools	as:
“[PIXOLOGIC_PUBLIC]/GoZProjects/Default/Sphere1.GoZ”
“[PIXOLOGIC_PUBLIC]/GoZProjects/Default/Cube1.GoZ”

	○ then	it	writes	the	GoZ_ObjectList.txt	as:
[PIXOLOGIC_PUBLIC]/GoZProjects/Default/Sphere1
[PIXOLOGIC_PUBLIC]/GoZProjects/Default/Cube1

•	 Exception	 for	 an	 empty	 list:	 the	 file	must	 contain	 just	 an	 empty	 line	 (Carriage	
Return).

5. goz_application.txt

This	file	stores	the	active	‘GoZ-enabled’	application,	i.e.	the	application	which	is	used	
/	will	be	used	to	exchange	objects	with	ZBrush.

The	user	can	change	the	active	‘GoZ-enabled’	application:

•	 In	ZBrush:	by	clicking	on	the	“R”	button	at	the	right	of	the	line	containing	all	the	
GoZ	buttons,	 it	opens	a	dialog	where	the	user	can	choose	which	 ‘GoZ-enabled’	ap-
plication	to	work	with.

•	 In	any	 ‘GoZ-enabled’	application:	when	the	user	clicks	on	GoZ,	 it	first	changes	
the	active	‘GoZ-enabled’	application	to	this	application,	and	then	it	opens/switches	to	
ZBrush.

6. goz_objectpath.txt:

This	is	a	temporary	file	used	by	the	target	‘GoZ-enabled’	application	to	create	a	link	
between	an	object/mesh	from	the	application,	and	a	SubTool	in	ZBrush.

More	 details	 are	 provided	 in	 the	 “GoZMakeObjectPath.exe/	 GoZMakeObjectPath.
app”subsection.

13

GoZBrush SDK

7. gozlocateapp.exe / gozlocateapp.app

This	is	a	common	utility	which	can	be	used	as	a	generic	application	search	utility:	it	
searches	for	all	versions	of	an	application	in	the	default	application	folder(s)	of	the	user’s	
computer	(“/Applications”	on	MacOSX,	and	both	Win32	and	X64	application	folders	on	
Windows).

It	requires	2	parameters:

1.	 The	 ‘GoZ-enabled’	 application	 identifier.	 In	 fact,	 the	application	 identifier	 is	 the	
name	of	the	“Application	subfolder”	(see	more	details	in	part	2	of	this	document).

It	is	necessaryto	write	the	list	of	the	application	paths	found,	as	this	list	is	written	in	
the	file	“GoZ_AppPathList.txt”	in	the	‘GoZ-enabled’	“Application	subfolder”.

2.	 The	short	name	of	the	application	to	search	(for	example	“Cinema4D*.app”).	The	
wildcards	‘*’	and	‘?’	are	supported.

As	a	result,	it	creates	the	file	“GoZ_AppPathList.txt”	in	the	‘GoZ-enabled’	“Application	
subfolder”:	for	each	path	found	it	writes	a	line	with	the	full	path	to	the	application	found,	
and	if	no	path	was	found,	it	just	writes	an	empty	line	(Carriage	Return)	in	the	file.

8. gozbruShfromapp.exe / gozbruShfromapp.app

This	utility	MUST	be	called	by	every	‘GoZ-enabled’	application	when	the	user	clicks	
on	the	GoZ	button	in	the	‘GoZ-enabled’	application	to	edit	his	mesh	into	ZBrush.

In	some	respects	this	utility	is	similar	to	the	“Editing	utility”	(described	in	the	part	2	
of	this	document),	except	that	it	“brings”	the	object(s)	to	ZBrush	instead	of	to	the	‘GoZ-
enabled’	application.

More	precisely,	this	utility	first	verifies	if	ZBrush	is	running	and	if	not,	 it	 launches	a	
new	ZBrush	instance.	Then,	it	opens	the	objects	(listed	in	the	file	“GoZ_ObjectList.txt”)	
in	ZBrush.

9. gozmakeobjectpath.exe / gozmakeobjectpath.app

This	 utility/application	may	 be	 used	 by	 any	 ‘GoZ-enabled’	 application	 to	 create	 a	
“Unique	object	identifier”	in	order	to	“link”	an	object/mesh	to	a	ZBrush	SubTool.

How	to	use	this	utility:

•	 Writes	the	object	or	mesh	short	name	into	the	text	file	“[PIXOLOGIC_PUBLIC]/
GoZBrush/GoZ_ObjectPath.txt”	(for	example	“sphere”).
•	 Run	this	utility:	it	will	create	a	“Unique	object	identifier”	(for	example	“[PIXOLOG-

14

GoZBrush SDK

IC_PUBLIC]/GoZProjects/Default/sphere1”).
•	 Then	listen	to	the	file	modifications,	or	reads	the	file	until	its	content	was	changed:	

the	file	will	contain	the	“Unique	object	identifier”.

Note:
As it must return a unique identifier, it automatically handles cases where an identifier match-

ing the object name already exists; in this case, it ensures that the returned identifier is unique by
adding/increasing an occurrence number at the end until it is unique.

What	to	do	with	the	returned	“Object	unique	identifier”:

•	 This	 “Unique	 object	 identifier”	 is	 exactly	 is	 the	 same	which	 is	 used	 in	 the	 file	
“GoZ_ObjectList.txt”.
•	 Just	appends	“.GoZ”	(or	another	extension	 if	you	exchange	with	ZBrush	 in	an-

other	file	format)	at	the	end	of	this	identifier,	and	you	get	directly	the	full	path	to	the	GoZ	
file	to	be	exported	from	the	‘GoZ-enabled’	application	(for	that	object).
•	 Be	careful	to	link	this	identifier	to	the	object	on	the	‘GoZ-enabled’	application	side,	

so	that	you	can	directly	retrieve	the	object	given	the	identifier,	and	the	reverse,	retrieve	
the	identifier	linked	to	an	object.	On	its	side,	ZBrush	takes	care	to	“link”	an	identifier	to	
a	SubTool.

10. ScriptS Subfolder

This	subfolder	is	for	internal	use	only	and	must	NOT	be	modified.
It	contains	some	ZScripts	used	internally	by	GoZBrush.

15

GoZBrush SDK

IV THE “APPLICATION SUBFOLDER”

The	“Application	subfolder”	describes	a	‘GoZ-enabled’	application,	and	must	contain:

•	 The	subfolder	name	itself,	which	is	considered	by	ZBrush	as	the	unique	applica-
tion	ID.

For	this	reason,	it	must	contain	NEITHER	space	NOR	tabulation.

•	 A	 file	 “GoZ_Info.txt”	 which	 describes	 some	 information	 required	 by	 GoZBrush	
about	the	‘GoZ-enabled’	application.	Detailed	information	on	this	file	will	follow	in	asu-
bsection.

•	 An	application/utility	which	searches	on	the	disk	for	all	 installed	versions	of	the	
‘GoZ-enabled’	application.

Let’s	call	it	the	“Locate utility”.

•	 An	application/utility	which	installs	any	file	required	for	GoZ	support	in	the	target	
‘GoZ-enabled’	application.

Let’s	call	it	the	“Install utility”.

•	 An	application/utility	which	opens	or	updates	the	SubTool(s)	exported	by	ZBrush	
into	the	target	‘GoZ-enabled’	application.

Let’s	call	it	the	“Editing utility”.

•	 Optional	configurations	file	(“GoZ_Config.txt”)	which	contains	optional	user	pref-
erences	specific	to	the	‘GoZ-enabled’	application.

•	 ZBrush	will	store	in	this	file	the	full	path	to	the	active	version	of	the	‘GoZ-enabled’	
application.	It	will	create	the	file	if	it	does	not	exist.

•	 A	script	or	plugin	for	the	target	‘GoZ-enabled’	application,	which	will	be	respon-
sible	for	sending	objects/meshes	selected	in	the	‘GoZ-enabled’	application	to	ZBrush.

Let’s	call	it	the	“Export plugin”.

•	 Whatever	files	required	by	the	target	‘GoZ-enabled’	application	to	support	GoZ.

1. goz_info.txt

This	describes	the	‘GoZ-enabled’	application,	and	uses	the	PFF	file	format	(see	An-
nex).

Some	preferences	are	required	in	this	file:

16

GoZBrush SDK

•	 NAME:	The	full	name	of	the	application	(it	can	contain	spaces)

•	 EXTENSION:	The	extension	of	the	exchange	file	format	to	use	(the	preferred	
format	is	“.GoZ”)

•	 TAMPLATE:	The	export	template	file	used	by	ZBrush	to	export	a	SubTool.
For	“.GoZ”	extension,	the	preferred	template	file	is	“GoZ	Complete	Binary.GoZ”
You	will	find	all	the	template	files	in	“[ZBrush	install	folder]/ZStartup/ExportTam-
plates/”.

•	 EDIT_COMMAND:	The	application	or	 command	 (.exe/.app	or	 .bat/.sh	 file)	 to	
launch	in	order	to	edit	the	SubTool(s)	from	ZBrush	into	the	external	‘GoZ-enabled’	ap-
plication.

Some	other	preferences	are	optional	but	recommended:

•	 GOZ_VERSION:	Sets	the	highest	GoZ	version	supported.	Default	value	is	1.

•	 LOCATE_COMMAND:	the	name	of	the	“Locate	utility”.
It	can	be	either	an	application	(.exe/.app),	or	a	.bat/.sh	batch.

•	 INIT_COMMAND:	The	application	or	 command	 (.exe/.app	or	 .bat/.sh	 file)	 to	
call	in	order	to	install	some	required	files	(for	example	target	script	files)	in	the	target	
‘GoZ-enabled’	application	path.

Any	‘GoZ-enabled’	application	may	need	to	set	some	Import/Export	options	before	
importing/exporting	files.	By	default,	no	import/export	option	is	set.

These	 Import/Export	 options	 are	 in	 relation	 with	 the	 Import/Export	 preferences	 in	
ZBrush:

	
IMPORT_FLIP_X
IMPORT_FLIP_Y
IMPORT_FLIP_Z
EXPORT_FLIP_X
EXPORT_FLIP_Y
EXPORT_FLIP_Z
IMPORT_SWITCH_YZ
EXPORT_SWITCH_YZ
IMPORT_FLIP_NORMALS
EXPORT_FLIP_NORMALS

IMPORT_POLYGROUPS

17

GoZBrush SDK

IMPORT_MAT_AS_GROUPS
GROUP_NSIDED_POLYS

NORMAL_MAP_FLIP_X
NORMAL_MAP_FLIP_Y
NORMAL_MAP_FLIP_Z
NORMAL_MAP_FLIP_XY
NORMAL_MAP_FLIP_VERT

IMPORT_MFLIP_X
IMPORT_MFLIP_Y
IMPORT_MFLIP_Z
IMPORT_MSWITCH_YZ

EXPORT_MFLIP_X
EXPORT_MFLIP_Y
EXPORT_MFLIP_Z
EXPORT_MSWITCH_YZ

2. the “locate utility”

This	application/utility	 is	 responsible	 for	searching	all	versions	of	 the	GoZ-enabled	
application	in	the	user’s	computer.	It	must	return	a	list	of	all	the	paths	found	in	the	text	
file	“GoZ_AppPathList.txt”:	for	each	path	found	it	must	write	a	line	with	the	full	path	to	the	
application	found,	and	if	no	path	was	found,	it	must	write	an	empty	line	(Carriage	Return)	
in	the	file.

ZBrush	will	call	this	“Locate	utility”:

•	 For	each	GoZ-enabled	application:	the	first	time	the	user	clicks	on	the	GoZ	button.
•	 When	 a	 new	GoZ-enabled	 application	 is	 added:	 the	 next	 time	 the	 user	 starts	

ZBrush	and	click	on	GoZ	button.
•	 When	the	user	goes	to	the	GoZ	preferences,	and	clicks	on	a	GoZ-enabled	ap-

plication	to	change	the	version	he	wants	to	use.

Then	it	will	propose	that	the	user	to	chooses	between	all	the	paths	in	the	list,	or	se-
lects	a	specific	location	through	a	Browse	button.

To		avoid	spending	too	much	time	searching	for	applications,	especially	those	not	in-
stalled	on	the	user’s	computer,	a	good	compromise	is	to	automatically	search	only	in	the	
default	application	folder.	For	custom	installs,	the	user	will	choose	the	version	he	wants	
by	using	the	“Browse”	button.

For	your	convenience,	you	can	use	a	default	“Locate	utility”,	which	searches	for	all	

18

GoZBrush SDK

occurrence	of	a	given	application	name	in	the	default	application	folder(s).	The	applica-
tion	name	may	contain	the	wildcards	‘?’	and/or	‘*’.	This	utility	is	“GoZLocateApp.exe”	and	
is	located	in	the	“GoZBrush	subfolder”.

For	example,	the	default	Cinema4D	“Locate	utility”	on	Windows	is	a	batch	file	which	
calls	this	utility:

..\..\GoZBrush\GoZLocateApp.exe	Cinema4D	“Cinema	4D*.exe”

3. the “inStall utility”

This	application/utility	is	responsible	for	installing	any	file	required	by	a	GoZ-enabled	
application	in	order	to	make	GoZBrush	work	with	this	GoZ-enabled	application.

Such	files	are	specific	to	the	GoZ-enabled	application,	and	can	be	for	scripts,	icons	
or	whatever	 file	 you	 need	 on	 the	GoZ-enabled	 application	 side	 to	make	 it	 work	with	
GoZBrush.

In	particular,	 this	 “Install	utility”	must	copy	 the	“Export	plugin”	 in	 the	 ‘GoZ-enabled’	
application.

Some	notes	and	requirements	about	the	“Install	utility”:

•	 First	of	all,	it	must	get	the	full	path	to	the	‘active	version’	of	the	GoZ-enabled	ap-
plication	where	to	install	the	files,	in	the	file	“GoZ_Config.txt”.	More	information	on	the	
configuration	file	format	can	be	found	in	the	Appendix	(PFF	–	Preferences	File	Format).

•	 Then,	it	must	install	the	required	files.

•	 And	after	the	installation	is	done,	it	must	create	a	file	“GoZ_InstallLog.txt”:
	○ If	installation	went	fine:	an	empty	file.
	○ If	an	error	occurred	during	installation:	a	text	message	that	will	be	displayed	to	
the	user	to	tell	him	that	installation	failed	and	if	possible	the	reason	why	it	failed,	
or	what	he	can	do	to	fix	the	problem.

•	 Consider	that	it	is	called	with	administrator	privileges,	as	ZBrush	takes	care	to	ask	
the	user	to	login	as	a	user	with	administrator	privileges	when	running	this	“Install	utility”.

4. the “editing utility”

This	application/utility	is	responsible	for	opening	the	SubTool(s)	coming	from	ZBrush	
into	the	‘GoZ-enabled’	application.

Some	notes	and	requirements	about	the	“Editing	utility”:

•	 It	must	ensure	that	the	‘GoZ-enabled’	application	version	used	matches	the	‘ac-
tive	version’	(the	one	selected	by	the	user	in	ZBrush).
•	 It	must	take	care	to	not	launch	several	instances	of	a	same	‘GoZ-enabled’	applica-

tion	but	instead	reuse	the	instance	currently	running.
•	 The	list	of	SubTools	to	open/edit	in	the	‘GoZ-enabled’	application	is	given	in	the	

19

GoZBrush SDK

file	“GoZ_ObjectsList.txt”	in	the	“GoZBrush	subfolder”	(more	information	on	this	file	is	
provided	in	the	first	part	of	this	document).

5. goz_config.txt

This	is	the	configuration	file	specific	to	the	‘GoZ-enabled’	application,	and	uses	the	
PFF	file	format	(see	Appendix).	It	may	contain	any	specific	preference/option	you	may	
need	to	define.

ZBrush	will	add	2	preferences	in	this	file:

•	 PATH:	the	full	path	to	the	active	‘GoZ-enabled’	application.
•	 APPS_UNLOCKED:	only	on	MacOSX.

To	avoid	problems	with	applications	marked	as	unsafe	after	being	downloaded,	
ZBrush	will	unmark	such	programs.	It	sets	this	preference	after	it	has	“unlocked”	
every	application	it	has	found	in	the	“Application	folder”.

6. the “export plugin”

This	 is	a	script	(or	a	plugin,	or	something	similar)	which	is	responsible	for	sending	
a	selection	of	objects/meshes	from	the	‘GoZ-enabled’	application	into	ZBrush,	by	click-
ing	on	a	GoZ	button	(or	a	menu	entry,	or	any	other	widget	of	your	choice)	in	the	‘GoZ-
enabled’	application.

This	plugin	should	be	installed	in	the	‘GoZ-enabled’	application	by	the	“Install	utility”.

This	plugin	must	perform	the	following:

1.	 For	each	selected	object,	first	check	if	the	object	is	already	“linked”	to	a	“Unique	
object	identifier”.	If	not,	then	create	a	“Unique	object	identifier”	for	this	object	by	using	
the	“GoZMakeObjectPath”	utility	(see	more	information	in	first	part	of	this	document).

2.	 Once	each	object	is	linked	to	a	“Unique	object	identifier”,	create	the	file	“GoZ_Ob-
jectList.txt”	in	the	“GoZBrush	subfolder”	and	write	the	“Unique	object	identifier”	for	ev-
ery	selected	objects	(one	identifier	per	line,	see	more	information	in	first	part).

3.	 And	of	course	for	each	object,	write	the	“.GoZ”	file	(or	any	other	file	format	sup-
ported	by	ZBrush,	depending	on	 the	file	 format	exchange	you	choose	 in	 “GoZ_Info.
txt”).	Pay	attention	to	save	to	the	right	file,	which	is	the	“Unique	object	identifier”	+	the	
extension	(“.GoZ”	or	the	extension	stored	in	the	“GoZ_Info.txt”).

4.	 Finally,	simply	call	the	utility	“GoZBrushFromApp”	which	will	open	the	objects	in	
ZBrush.
	

20

GoZBrush SDK

V APPENDIX - PFF: PREFERENCES FILE FORMAT

Several	GoZ	files	are	used	to	describe/store	preferences.
For	example,	each	application	must	provide	a	GoZ_Info.txt	file	to	describe	the	GoZ	

enabled	application.	Another	example	is	GoZ_Config.txt	in	the	GoZBrush	folder,	which	
stores	some	user	GoZ	preferences.

GoZ	uses	a	common	format	for	such	files;	let’s	name	it	PFF	(“Preferences	File	For-
mat”).

This	is	very	simple	file	format:	it	consists	of	a	text	file,	where	each	line	contains	one	
preference	definition	with	the	following	syntax:	

PREFERENCE = value

Here are some example files:

1.	 GoZBrush/GoZ_Config.txt:

PATH
IMPORT_AS_SUBTOOL
SHOW_HELP_WINDOW

=
=
=

“C:\progr...ZBrush 4\ZBrush.exe”
FALSE
TRUE

2.	 GoZApps/Cinema4D/GoZ_Info.txt:

NAME
GOZ_VERSION
SHOW_HELP_WINDOW
EXTENSION
LOCATE_COMMAND
INIT_COMMAND
EDIT_COMMAND

=
=
=
=
=
=
=

“Cinema 4D”
1
“.GoZ”
“GoZ Binary For Cinema4D.GoZ”
“GoZLocateCinema4D.bat”
“GoZInitCinema4D.exe”
“GoZBrushToCinema4D.exe”

	I	Adding GoZ support for a new application
	1.	Some notes before starting:
	2.	Organization of the document:
	3.	Quick overview of GoZ workflow:

	II	The GoZ SDK
	1.	The main steps/requirements to add GoZ support for a new application
	2.	Overview of the overall GoZ process
	3.	The binary GoZ file format
	4.	The source code provided
	4.1	“GoZ_Mesh.h”/“GoZ_Mesh.cpp”
	4.2	“GoZ_Binary.h”
	4.3	“GoZ_Utils.h”/“GoZ_Utils.cpp”:
	4.4	“main.cpp”

	III	The “GoZBrush subfolder”
	1.	GoZ_Config.txt
	2.	GoZ_Help.txt
	3.	GoZ_ProjectPath.txt
	4.	GoZ_ObjectList.txt
	5.	GoZ_Application.txt
	6.	GoZ_ObjectPath.txt:
	7.	GoZLocateApp.exe / GoZLocateApp.app
	8.	GoZBrushFromApp.exe / GoZBrushFromApp.app
	9.	GoZMakeObjectPath.exe / GoZMakeObjectPath.app
	10.	Scripts subfolder

	IV	The “Application subfolder”
	1.	GoZ_Info.txt
	2.	The “Locate utility”
	3.	The “Install utility”
	4.	The “Editing utility”
	5.	GoZ_Config.txt
	6.	The “Export plugin”

	V	Appendix - PFF: Preferences File Format

