Matrix Manual (Classic)

About

In 3D graphics a matrix is used to represent the transformation from one coordinate system to another. The typical use case is the transformation matrix that defines the position, rotation and scale of an object in 3D space.

The classic matrix classes available:

  • Matrix32: A matrix composed of Vector32 elements.
  • Matrix64: A matrix composed of Vector64 elements.
  • Matrix: Defined as Matrix64.

See also Vector Manual (Classic).

Warning
A description of MAXON API matrix classes can be found here: Matrices.

Access

To retrieve and modify Matrix objects stored in a BaseObject respectively use:

  • BaseObject::GetMg(): Returns the world (global) matrix representing the object's position, scale and rotation.
  • BaseObject::SetMg(): Sets the world (global) matrix representing the object's position, scale and rotation.

For more object related matrices see BaseObject.

To retrieve and modify Matrix objects stored in a BaseContainer respectively use:

See also BaseContainer Manual.

To retrieve and modify Matrix objects stored in a GeData object (GeData type is DA_MATRIX) respectively use:

See also GeData Manual.

// This example reads a Matrix userdata parameter from the given object
// and creates a new cube using that Matrix.
GeData data;
// read the user data parameter 1
if (object->GetParameter(id, data, DESCFLAGS_GET::NONE))
{
const Matrix mg = data.GetMatrix();
if (cube != nullptr)
{
cube->SetMg(mg);
doc->InsertObject(cube, nullptr, nullptr);
}
}
Definition: c4d_baseobject.h:248
void SetMg(const Matrix &m)
Definition: c4d_baseobject.h:516
static BaseObject * Alloc(Int32 type)
Definition: lib_description.h:355
Definition: c4d_gedata.h:83
const Matrix & GetMatrix() const
Definition: c4d_gedata.h:492
@ DTYPE_MATRIX
Matrix
Definition: lib_description.h:71
@ DTYPE_SUBCONTAINER
Sub-container.
Definition: lib_description.h:58
#define Ocube
Cube.
Definition: ge_prepass.h:1119
#define ID_USERDATA
User data ID.
Definition: lib_description.h:25
#define ConstDescID(...)
Definition: lib_description.h:594
const char * doc
Definition: pyerrors.h:226
Definition: object.h:105
Represents a level within a DescID.
Definition: lib_description.h:298

Components

A matrix is composed of four vector components:

  • Matrix::off: The translation vector.
  • Matrix::sqmat::v1: The X-axis coordinate in a left-handed coordinate system of a transformed X-axis aligned unit-vector.
  • Matrix::sqmat::v2: The Y-axis coordinate in a left-handed coordinate system of a transformed Y-axis aligned unit-vector.
  • Matrix::sqmat::v3: The Z-axis coordinate in a left-handed coordinate system of a transformed Z-axis aligned unit-vector.
// This example prints the world space position of the given object.
const Matrix mg = object->GetMg();
ApplicationOutput("World Space Position: @"_s, mg.off);
#define ApplicationOutput(formatString,...)
Definition: debugdiagnostics.h:204
V off
The translation vector.
Definition: matrix.h:263

Functionality

Apply Transformation

A matrix is typically used to transform a given vector.

  • Matrix::operator*() const: Transforms the given vector.
// This example loops through all points of the given point object.
// For each point the coordinates are transferred into world space
// and a sphere is created at that location.
const Vector* const points = pointObject->GetPointR();
const Int32 pointCount = pointObject->GetPointCount();
const Matrix mg = pointObject->GetMg();
for (Int32 i = 0; i < pointCount; ++i)
{
if (points)
{
const Vector point = points[i];
const Vector worldSpacePosition = mg * point;
if (sphere != nullptr)
{
sphere->SetMg(MatrixMove(worldSpacePosition));
doc->InsertObject(sphere, nullptr, nullptr);
}
}
}
Py_ssize_t i
Definition: abstract.h:645
maxon::Int32 Int32
Definition: ge_sys_math.h:56
#define Osphere
Sphere.
Definition: ge_prepass.h:1120
Matrix MatrixMove(const Vector &t)
Definition: c4d_tools.h:271

Edit Matrix

Basic operations to edit a matrix are done using operators or special functions:

// This example calculates the position of objectB in the local space of objectA.
const Matrix mgA = objectA->GetMg();
const Matrix inverse = ~mgA;
const Vector worldSpacePos = objectB->GetMg().off;
const Vector localSpacePos = inverse * worldSpacePos;
const maxon::String objectBName { objectB->GetName() };
const maxon::String objectAName { objectA->GetName() };
ApplicationOutput("Object "_s + objectBName);
ApplicationOutput("Position @ in the local space of @"_s, localSpacePos, objectAName);
Definition: string.h:1237

Compare

Two matrices can be compared using the usual operators:

Note
For save comparison of floating point values see Compare.

Disc I/O

Matrix objects can be stored in a BaseFile or a HyperFile using:

// This example writes the Matrix into a new BaseFile.
if (bf == nullptr)
return maxon::OutOfMemoryError(MAXON_SOURCE_LOCATION);
// open BaseFile to write
{
bf->WriteMatrix64(matrix);
bf->Close();
}
PyCompilerFlags const char * filename
Definition: ast.h:15
Definition: ge_autoptr.h:37
@ ANY
Show an error dialog for any error.
#define MAXON_SOURCE_LOCATION
Definition: memoryallocationbase.h:67
// This example reads a Matrix form the given BaseFile.
if (bf == nullptr)
return maxon::OutOfMemoryError(MAXON_SOURCE_LOCATION);
// open BaseFile to read
{
Matrix matrix;
bf->ReadMatrix64(&matrix);
@ READ
Open the file for reading.
// This example writes the Matrix into a new HyperFile.
if (hf == nullptr)
return maxon::OutOfMemoryError(MAXON_SOURCE_LOCATION);
// open HyperFile to write
if (hf->Open('matr', filename, FILEOPEN::WRITE, FILEDIALOG::ANY))
{
hf->WriteMatrix(matrix);
hf->Close();
}
// This example reads a Matrix from the given HyperFile.
if (hf == nullptr)
return maxon::OutOfMemoryError(MAXON_SOURCE_LOCATION);
// open HyperFile to read
if (hf->Open('matr', filename, FILEOPEN::READ, FILEDIALOG::ANY))
{
Matrix matrix;
hf->ReadMatrix(&matrix);

See also BaseFile Manual on Matrix and HyperFile Manual on Matrix.

Utility Functions

Several utility functions can be used to easily create matrices:

Matrices also represent rotations. Several functions can be used to change and obtain the rotation stored in a matrix:

Note
Rotations are represented by vectors, see also Vector Manual (Classic).

Matrix utility:

  • RebuildMatrix(): Recalculates a matrix making it orthogonal if one or more of its vectors is collapsed
// This example creates a rotation matrix based on a direction vector
// and applies it to the given object.
const Vector vec { 100, 100, 100 };
const Vector rotation = VectorToHPB(vec);
const Matrix mg = HPBToMatrix(rotation, ROTATIONORDER::DEFAULT);
object->SetMg(mg);
@ DEFAULT
Default order (HPB).
Vector VectorToHPB(const Vector &p)
Matrix HPBToMatrix(const Vector &hpb, ROTATIONORDER rot_order)

Further Reading